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versus (sin 0)/~t and  a smooth curve was drawn. This 
is represented in Table  5. 

We would like to t h a n k  E. Rudzi t i s  and  J .  Ka lna j s  
for prepar ing and  recrystal l izing our samples of di-p- 
tolyl  sulfide, and  Prof. A. yon Hippel  for his interest.  
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The significance and validity of Friedel's law are critically discussed by means of the dynamical 
theory of diffraction. I t  is proved that  in some cases diffraction phenomena are not invariant 
under the operation of inversion exerted on the crystal; this means that  Friedel 's law fails. The 
cause of the failure is not the effect of absorption, but  is found in the dynamical  relation of re- 
flexions which are excited simultaneously. 

1. I n t r o d u c t i o n  

Friedel 's  law (Friedel, 1913) was originally proposed 
as an  empir ical  rule for the diffraction phenomena  of 
X-rays  by  crystals. The law implies:  

Intensi t ies  of reflexions of indices (hkl) and (h/c/-) are 
equal  to each other. (Form I) 

This rule can be readi ly  derived from the k inemat ica l  
theory  of diffraction, because the  structure ampl i tudes  

_ _ _  

F(hkl) and F(hkl) are general ly complex conjugate to 

each other and  the  in tegrated in tens i ty  of the  diffrac- 
t ion spot given by  this theory  is proport ional  to IF[ 2. 
The same law is expected to hold s imilar ly  for electron 
and  neut ron  waves when the diffraction takes place 
in accordance with the k inemat ica l  theory. 

Friedel 's  law is sometimes expressed in another  
form (e.g. Zachariasen,  1944): 

The diffraction phenomena  of waves by  a crystal  
are invar ian t  under  an inversion of the crystal  with 
respect to the incident  beam. (Form II) 
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The relation between Form I and Form I I  is criti- 
cally discussed in § 2. Form I I  implies that  any in- 
dication of the sense of polar axes in crystals never 
appears in diffraction phenomena.* 

The break-down of Friedel's law can only occur 
when the scattering of waves by the atoms is ac- 
companied by phase shifts. In  the case of X-rays, this 
effect was experimentally detected on zincblende, by 
utilizing anomalous dispersion for zinc atoms, by 
Nishikawa & Matsukawa (1928), Coster, Knol & Prins 
(1930), and Geib & Lark-Horowitz (1932). 

Now let us consider Friedel's law in the dynamical 
theory. In  this theory, Friedel's law expressed in 
Form I has no definite meaning except when a certain 
restriction is imposed, as explained in § 2. Therefore 
we must refer to Form II.  The proof of the validity 
of Friedel's law in the dynamical theory was given 
by Ewald (1925) in the case of single reflexion, and by 
Laue (1948a, b) for general cases in which simultaneous 
reflexions take place. 

On the other hand, the present authors (Miyake & 
Uyeda, 1950) have found an effect by which the sense 
of polar axes of zincblende can be determined solely 
by an electron diffraction pattern from this crystal in 
which two strong diffracted beams are present. Later, 
Kohra and the present authors (Kohra, Uyeda & 
Miyake, 1950; Kohra, 1954) showed that  the principal 
feature of the phenomenon is rendered by the dynam- 
ical theory of diffraction without taking into account 
the effect of absorption. 

Our observation and theoretical explanation seem to 
contradict Laue's theory, and this contradiction cannot 
be considered trivial. The purposes of the present 
paper are to reinvestigate the meaning of Friedel's 
law and to find where it holds and where it fails. Our 
theoretical interpretation in the case of zincblende is 
discussed again and is confirmed; thus it is proved that  
Friedel's law does not hold in some cases in the 
dynamical theory, even when absorption is not taken 
into account. Although our treatment applies equally 
to the theories of X-ray, electron and neutron diffrac- 
tion, the discussion is developed only for electron 
diffraction. 

* Friedel 's law has sometimes been interpreted as if it 
implies tha t  the presence or absence of the centre of symmet ry  
in crystals cannot  be known from the diffraction phenomena 
alone; bu t  this interpretat ion is not  correct. Friedel's law 
excludes lmowledge about  the sense of polar axes only; it 
does no$ concern itsel~ with £he presence or absence of ~he 
centre of symmetry .  I n  some cases the presence or absence 
of the centre of symmet ry  can be concluded from diffraction 
patterns,  al though the sense of polar axes remains unknown. For  
example:  (i) In  favourable cases the space group of crystals 
can be uniquely determined from extinctions alone. (ii) Centre- 
symmetrical  and non-eentrosymmetrical  crystals present dif- 
ferent  features in the intensity statistics of reflexions (Wilson, 
1949a, b). (iii) By  applying the dynamical  theory,  Kambe & 
Miyake (Kambe & Miyake, 1954; Miyake & Kambe,  1954) 
discussed the effect of the relative phase angle of two structure 
amplitudes on diffraction patterns,  and they  showed tha t  a 
method is available in principle to determine the existence or 
absence of the centre of symmet ry  in crystals. 

2. The mean ing  of Friedel's law in the 
dynamical  theory 

(a) Plus and minus crystals 
Let us first consider a plane parallel slab of a non- 

centrosymmetrical crystal of infinite lateral extension 
and thickness 2H. We will call it the plus crystal. The 
electric potential therein may be written 

+ + 

V(r) = 2 Vm exp [2~i(hmr)]; (1) 
m 

+ 

m represents a set of three indices (mlm~m3) , Vm the 
+ 

Fourier coefficient of V(r), and h~ the position vector 
of a reciprocal-lattice point 

hm = mlbl-t-m2b2-4-msb3, (la) 

here bl, bp, b3 are the axes reciprocal to those of the 
crystal lattice al, a2, a 3. 

Next, consider another crystal which is obtained 
from the plus crystal by an operation of inversion 
about the centre of the slab. The new crystal is called 
the minus crystal and its potential is given by 

V(r) = ~ V~ exp [2~i(hmr)] (2) 
m 

with the relation 
+ 

v *  = (3) 
+ 

Since V(r) and l~(r) are real, we have 
+ + - -  

v *  = v _ m ,  v *  = (4) 

The wave function of an electron with the total 
energy E in a stationary electric potential V(r) is 
given by 

= exp [-2~iEt /h]u(r) ,  (5) 

where u(r) obeys the SchrSdinger equation for sta- 
tionary states, namely 

.V~u(r)-4-(8zd~n/h~)[E+eV(r)]u(r) = O. (6) 

For the potential V(r), we put 

V(r) = 0, z > H (upper free space), 

V(r) = V(r), H > z > - H  (inside the crystal), 
V(r) = 0, - H  > z (lower free space), 

where the z axis is taken to be normal to the surface 
of the crystal slab. 

On the boundary surfaces of the crystal, we have 
the boundary conditions 

u(r) and ~u(r)/az are continuous at 
z = H  and z = - H .  (7) 

In each of the three spaces, u(r) is a superposition 
of component plane waves. In  the upper free space, 
we assume present an incident wave of given amphtude 
A and given wave vector K0, expressed by 
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where 
A exp  [2~i(K0r)]  , 

lKo[ = K o = ]/{(2m/h~)E}. 

(8) 

Under the actual experimental condition, this wave 
should be the only one in the free spaces which travels 
towards the crystal;  the other components in these 
spaces must emerge outwards from the crystal. These 
others correspond to diffracted waves (reflexions) 
which may  be observed in experiments. 

(b) Formulation of Friedel's law 
In  this subsection, the relation between Form I and 

Form I I  is made clear. Form I is stated as an empirical 
rule and it involves ambiguities because the meaning 
of the word intensities can be interpreted in many  
ways (see below). On the other hand, Form I I  involves 
no ambiguity, but  it  is not suitable for comparison 
with experiments. In  the following, we start  from Form 
I I  and rewrite it in more convenient forms. 

Form I I  can be rewritten as far as observable 
quantities are concerned as follows" The directions and 
the intensities of all corresponding reflexions (hkl) are 
equal to each other for the plus and minus crystals, 
provided the intensity and the direction of the incident 
beam are kept unchanged (Form II ') .  In the dynamical 
theory (see § 4), as well as in the kinematical theory, 
the directions of all corresponding reflexions are equal 
to each other for the plus and the minus crystals. 
Therefore, Friedel's law in Form I I '  holds if the 
intensities of the corresponding reflexions are equal 
to each other. The word intensities should be inter- 
preted to include profiles of intensity curves, because 
according to the dynamical theory reflexions take 
place within certain angular ranges even when the 
crystals are thick. 

Let us assume tha t  Form I I '  holds and let us exert 
an operation of inversion on one of the crystals, say 
the minus crystal, and exert simultaneously the same 
operation on the incident beam which falls upon it. 
(The inversion does not apply to the axial system of 
reference.) Then we obtain the plus crystal and an 
incident beam in the direction opposite to tha t  
originally assumed. Since the indices (hid) for the 
minus crystal are transformed into the indices (hkl) 
for the new plus crystal, we can rewrite Form I I '  as 
far as intensities are concerned as follows" The in- 
tensities of (hkl) and (hkl) for a fixed crystal are equal 
to each, other provided the directions of the incident beamz 
which excite these reflexions are opposite to each other 
(Form I'). 

Form I '  goes over into Form I if the restriction 
imposed on the directions of the incident beams is 
omitted. Such a restriction can be omitted when the 
kinematical theory is applicable and the crystal is 
sufficiently thick; in such cases Bragg reflexions 
appear under sharp angular conditions and only in- 
tegrated intensities, which are independent of the 

directions of the incident beam, can be observed. 
However, when reflexions possess profiles of finite 
widths, the restriction is important .  In the dynamical 
theory, profiles are generally finite and, furthermore, 
intensities vary  with azimuthal settings of incident 
beams, especially when more than  two reflexions are 
excited simultaneously. Therefore, the restriction is 
inevitable and cannot be omitted in Form I' .  In  the 
following sections discrimination between the holding 
and the failure of Friedel's law in the dynamical theory 
must be made by applying Form ]I,  I I '  or I ' .  

If Form II,  I I '  and I '  hold by interpreting the word 
intensities as detailed profiles, we say tha t  Friedel's 
law holds strictly. When, however, profiles of inten- 
sities oscillate rapidly with changes of the direction 
of incident beam so tha t  only averaged profiles are 
observable, intensities may be interpreted as averaged 
profiles from an experimental point of view. When 
reflexions are so sharp tha t  only integrated intensities 
are observable, intensities may be interpreted as inte- 
grated intensities. In  some cases Form II,  I I '  and I ' ,  
may  hold by interpreting intensities as the averaged 
profiles or the integrated intensities. In  such cases we 
say tha t  Friedel's law holds loosely. When the law 
holds strictly it  holds also loosely; but  not  vice versa. 

I t  can be proved tha t  when the diffraction process 
is in accordance with the kinematical theory, Friedel's 
law holds strictly, even when the crystal is so thin tha t  
the widths of profiles are finite. 

(c) The case of zincblende 
In  this subsection, we show tha t  our observation 

in the case of zineblende (Miyake & Uyeda, 1950) 
violates Form II ' .  Our observation is as follows: The 
incident beam falls upon the cleavage surface (110) 
of the crystal in the [110] or [110] azimuth, and re- 
flexions (hhl) and (hhl) are excited simultaneously. We 
observed tha t  the intensities of these reflexions are 
not equal to each other, namely the relation 

l(h1~z) = l(m~) (A) 
fails. 

Let us consider the reflexions (hhl) and (hhD from 
the plus and the minus crystals. Since zincblende has 
a mirror plane parallel to (110), the minus crystal can 
be derived from the plus crystal not only by an 
inversion, but  also by a rotation of 180 ° around the 
axis normal to (110). Then we have 

- [ -  - -  . - b  

I(hh~ = I(hh~), I(hh~) = I(hhO. (B) 

When we assume the equality (A), then, combining 
(A) with (B), we get 

- t -  - -  4 -  - -  

1(hlu,) = l(hld), l(hh~) = 1(i,1,5. tO) 

Since, however, (A) fails in the present case, tO) must  
also fail. Thus our observation violates Form II ' .  
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(d) Meaning of complex conjugate wave functions in 
diffraction problems 

When a wave function u(r) satisfies the SchrSdinger 
equation for the plus crystal, then its complex con- 
jugate function u(r)* satisfies the same equation. I t  is 
sometimes thought tha t  the general validity of Frie- 
del's law in the dynamical theory is based upon this 
relation (Laue, 1948a, b). Actually, however, this 
relation indicates nothing on the validity of the law, 
as is clear from the following consideration. 

We assume tha t  u(r) for the plus crystal is com- 
posed of component waves such as are schematically 
represented in Fig. l(a). The complex conjugate solu- 

\ / 
¢'HHH - H H / ,  "~ "// / / / / / / / /~ 

(o )+ \  / 
/ /  

\ / 
: z///.z ~, ,//, ,:...<-~7//, :. :.z~,///4 

+ \ / /  
Y//II/////////X,/X4.~'/////.4~/,,*/Iff. 

/ /  

/ /  

~,////,.////////////.s~///////////~ 

J \  
Fig. 1. Schematic illustration of (a) u(r), (b) u(r)*, 

and (c) the inversion of (b). 

tion u(r)* is composed of component waves which 
travel in opposite directions, shown in Fig. l(b). Now 
we apply simultaneously an operation of inversion 
upon the crystal and the wave field of Fig. l(b). 
Then, since the crystal is transformed into the minus 
crystal, we have a possible solution for the minus 
crystal as is shown in Fig. 1 (c). The scheme of Fig. 1 (c), 
however, contains more than  one entrant  wave towards 
the crystal, contradicting the condition of diffraction 
experiments. I t  is obvious tha t  such a solution has no 
relation to the present problem, t 

3. G e n e r a l  p r o c e d u r e  of  s o l u t i o n  of  t h e  
d i f f r a c t i o n  p r o b l e m  

Although the dynamical theory of electron diffraction 
is widely known (e.g. Bethe, 1928; Thomson & 
Cochrane, 1939; Lamla, 1938a, b; Laue, 1948b), the 
following survey of the theory will be helpful. 

~f Laue seemed to consider that the wave function including 
time for the minus crystal has the form exp (2~iEt/h)u(r)* 
(Laue, 1948b). But this is only another way of representing 
the state exp (--2rdEtlh)u(r) for the plus crystal (see (5)). 

A solution of the SchrSdinger equation (6) for an 
electron in a crystal is given by  a Bloch function 

y~(k0) -- exp [2~i (k0r ) ]Zum exp [2~i(hmr)], (9) 
t n  

where k 0 represents the wave-number vector of the 
pr imary wave within the crystal. We can regard y~(k0) 
as a superposition of plane waves with amplitudes 
um and wave-number vectors 

k~ = ko+h  ~ . (9a) 

By substituting (9) in the SchrSdinger equation (6), 
we obtain the fundamental  equations of diffraction 

(u02-k~)um+ ~ '  v.um_,~ = 0 ,  (10) 
where n 

~.~) = (2m/h~)(E+eVo), v.  = (2me/h2)V., (11) 

and ~ '  means the sum without the term n -- (000). 
n 

The vector k o must satisfy the compatibility rela- 
tion 

i 
. .  ° . ° . . . . . . . . . o , . . . . ° . . , , o o ° ° o . . ° ° ° . °  

2 2 
. .  ( ~ g O - - ~ _ n )  V _  n V _ 2 n  . . . . . .  

V 2 2 
• " n ( ' 0 - - ~ 0 )  V - - n  V - - m  . . .  

2 ~ = 0 (12) 
. . . . .  v~ (~o-k~) v,_~ . . .  " 

9. 2 
. . . . .  V m V m _  n ( ~ g O - - k m )  . . . 

, . ° ° . . . . . . . , ° ° , ° . . . , , . ° ° ° , ° , , ° o . o . , ° °  

This defines the dispersion surface in reciprocal space; 
the wave points for k o must  lie on this surface. 

Let us assume the incident wave in the upper space 
is given by  (8). We decompose K o and k~ (including 
m = 0) into tangential  and normal components 

Ko = T 0 - / ' o Z ,  (13) 

k m =  tm-~'mZ, (14) 

where z is the unit  vector along the positive direction 
of z. Then the tangential  continuity for the incident 
wave vector required by the boundary condition is 
rewritten as 

To = to .  (15) 

Let us define, for convenience, the ~-normal as follows- 
The straight line normal to the entrant  surface which 
passes through the end point of the vector - T  O 
drawn from the origin of the reciprocal lattice. 

The wave points lor lq are determined by  the inter- 
section of the v-normal and the dispersion surface. 

The factor 2 2 u 0 - k  0 in (10) and (12) can be rewrit ten as 
2 2 ~o-k~  = fl~--~'~, (16a) 

where 
= u0-tm, ~'~ = ~ o - h . ~ ,  (16b) 

and h.~ is the z-component of h~. Since tim is a 
known quanti ty,  provided the incident wave vector 
is given, and h.~ is also known, the determinant  (12) 
is a function of the unknown quant i ty  ~o. 
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We denote the possible roots of ~'o by 70~'(N = 
0, I, II, . . .  ). Corresponding to each 76 v, we are given 
a Bloch function yj(l~) with coefficients u~, whose 
ratios are determined by the equation (10) and which 
can be normalized properly, say u0 ~ = 1. 

The wave function of an electron within the crystal, 
u~, is given as a superposition of many Bloch functions 

exp [2~i(k~r)],  (17) uc --- ~ ~#yJ(k0 ~') = Z ~ # Z  um 
N A" m 

where the sum ~ is over all possible wave points. 

The coefficients are determined by the boundary con- 
ditions (7). 

We can write the waves in the upper and lower free 
spaces respectively as 

Uu = A exp [2~i(K0r)]+27 R~ exp [2~i(K~r)], (18a) 
8 

uL = 27 Ds exp [2~i(K,r)] ,  (18b) 
8 

where the index s is used to represent the indices 
(m~, ms) corresponding to a row of reciprocal-lattice 
points normal to the surface of the crystal; specifically, 
s -- 0 means m 1 = 0, m~ = 0. Sometimes hereafter 
m(mlmpm3) is ~Titten as (s, ms). The coefficients R, 
and D, are amplitudes of diffracted component waves 
and K~ and K, are their wave vectors. I t  is obvious that  

IK:I = IK~] = g 0 ,  

and, by the requirement of the tangential continuity, 

K~ = t , + / ~ , z ,  (19a) 

Ks = t s - F s z ,  (195) 

where t~ means tangential component vector of k~,~, 
(m 3 is arbitrary), and / '~  is given by / '~  = "~/(g~)-t~). 

The conditions (7) at the upper and the lower sur- 
faces, after eliminating R~ and D~, give: 

2227 ~ ] 
% = 2FoA exp ( -2~ iFoH)  . ~0,, (20) 

2 27 a . v (~ '~ , -F , )u  ~v exp ( 2 g i } , ~ H )  = 0 
, s,  m a , , 

N m a 

where 5o,,--0 for s . 0 ,  and = 1 for s = 0 .  These 
relations hold for all s. 

If c~ are known from (20), the amplitudes of dif- 
fracted waves, R, and D, for all s, are calculated from 
the following equations: 

27 27 c ~ . ( ~ ' m - F , ) u ~  ex p ( - 2 ~ , , , ~  H) ] 
2/  m .  - ~  - 2 F p ~  exp (2~iF~H), 

27 27 ~ ( : ~  -~ F~)u~.~ exp ( 2 ~ i ~ m H )  (21) 

% = 2/'fl)~ exp (2~iF~H) . 

[R~] ~ and IDa[ ~ give detailed intensity profiles as func- 
tions of/ '0, which decides the direction of the incident 
beam. 

In the above equations the total number s is ex- 
tended to infinity, and consequently the total number 
of N is also infinity; but from now on, for the sake of 
simplicity, we confine these numbers, assuming them 
to be respectively a +  1 and Z+  1. Since the number 
Z+  1 is always twice the number a+  1, as proved by 
Lamla (1938a, b), the relations (20) are just sufficient to 
determine all ~ .  uniquely, and the relations (21) are 
sufficient to determine R, and D,. We call the funda- 
mental equations, after they are reduced to a finite 
number, the reduced fundamental equations. 

4. P r o p e r t i e s  of w a v e  f u n c t i o n  for p l u s  and  m i n u s  
c r y s t a l s  

We will now briefly depict some simple but important 
mathematical properties of the Bloch functions for the 
plus and the minus crystals: 

(a) A root ~'o of the compatibility equation (12) is 
in general either real or complex. In the latter case its 
complex conjugate should also be a root, because, 
through the relation Vm = V*m according to (4), the 
complex conjugate to the determinant (12) can be 
obtained by exchanging rows and columns and by 
replacing ?o by ?* in the determinant. We use new 
indices M and L or L' to indicate respectively a real 
and a pair of conjugate roots; for example, the real 
and the complex roots of ~o are written respectively as 
7o M and 70 L or ~0 L'. The letter N is also used as before 
for the general index of M and L or L'. 

(b) The dispersion surfaces are the same for the plus 
and the minus crystals, because the determinant (12) 
for both crystals is the same, as is known by paying 
due regard to the relations (3) and (4). This amounts 
to having the same roots of 7o for the two crystals. 
Therefore the marks + and - ,  which are used to 
discriminate between the quantities relevant to the 
plus and the minus crystals, can be omitted from Y0. 

(c) By substituting (16), the fundamental equations 
(10) and their conjugate complexes are rewritten as 

{ ~ -  (ro~-hmz) ~}u,~ + 27' vnu~_n" = O,  
n 

{ ~ -  (~o~*-hmy}u~ * + 2 '  v*u~*~ = 0. 
n 

By comparing these equations, we get the following 
relations: When the crystal is centrosymmetrical 
(where v~ are all real) 

u i are real,  (22)(i) 

ULm = u~'*. (22)(ii) 

Wh~'n the crystal is non-centrosymmetrical 

u~ are complex in general for real and 
complex 70 ~ , (23) (i) 

u~ -- u L'* does not hold in general.~ (23) (ii) 

~¢ This means that the equality can hold in some special 
cases, but fails in others• 

A C 8  2 4  
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Examples of the failing of the equality in (23)(ii) 
are available from (28), (29) and (30) in §§ 5 and 6. 

(d) The fundamental  equations (10) for the plus and 
minus crystals are 

+ + +  
2 ~¥ 2 ~V 

{ t i m - - ( r 0 - h m z )  } U m ~ -  2 '  VnU~m--n = O ,  

2 ~Y 2 - ~ v  { / ~ -  (to - h ~ )  } ~  + 2;' v . ~ _ .  -- 0 .  
n 

By comparing these equations and by  referring to (3), 
we get the following relations: 

+ 

-M uM. (24) (i) U r n - - - - -  

- -  + - -  + 

u L = u~'* or u~ = u~*.  (24)(ii) 

For non-centrosymmetrical crystals, we get from 
(23)(i) and (24)(i) 

- -  + 

u ~  does not hold in general/f (25) (i) U m 

and from (23)(ii) and (24)(ii) 
- -  + 

u~ = u~ does not  hold in general.~ (25) (ii) 

Even f6r the absolute values of both sides of the above 
equations, 

- -  + 

[u~] = [u~] does not hold in general.t (25) (iii) 

An example of the failure of the equality in (25)(iii) 
is provided by  (30) in § 6. 

From (24) and (25) we see tha t  the relation between 
the Bloch functions for the plus and the minus crystals 
is not  so simple for complex 7o as for real ~'0. 

5. Examples  in which  Friedel's law holds 

According to § 2(b) and § 3, Friedel's law in the 
dynamical theory is given by the relations 

A- - -  4- 

]Rsl~-- - IR, I ~., ID,12 = I/)sl ~. . (26) 

Since IRsl ~ and IDsl u give detailed profiles of intensities, 
the law holds strictly when (26) is satisfied for all s. 

In this and the following sections some practical 
examples are given where the law holds and where 
it fails. Although it is desirable to find general con- 
ditions under which the law holds or fails, we could 
not find them because no simple relations between 

+ 
-_v and x u.~ uz are available for non-centrosymmetrical 
crystals, as mentioned in § 4(d). 

(a) Example 1. The case where the Fourier coefficients 
(contained in the reduced fundamental equations) are all 
real 

Since this case is essentially equivalent to tha t  of 
centrosymmetrical crystals, it is obvious tha t  the law 
holds. 

(b) Example 2. The case where only a single reflexion 
is excited 

This case can be reduced to the foregoing case, 
because the only Fourier coefficient, appearing in the 
reduced fundamental  equation, can be reduced to be 
real by a suitable transformation of the coordinate 
origin, provided tha t  the  lattice plane concerned is not  
parallel to the surface of the crystal slab. The above- 
mentioned restriction arises from our premise in 
choosing the origin at  the mid-depth of the slab. 
A more general t rea tment  can be given as follows: 

When we assign the index s to the reflexion con- 
cerned, then the reduced fundamental  equations are 

4- 4- ± "1 
2 2 IV N 

(/~o--~o)Uo +V-sU~ = 0 ,  (27) J _ 4- 4- 
2 2 ~¥ ,sUo ~ + (f ls-~)~s  = o ,  

where uo ~ are normalized to unity.  Solving (27), we 
have 

u f  ~ = -(~-r°~")4- , (2s) 
V - -  s 

where N = 1, 2, 3 and 4. Let us put  
+ --  + 

UNs V _  s V s 
= exp (2ie~)- 

-1- __ 

U f  ?)--s  ?)s 

then e~ corresponds to the phase factor of v~. Since 
as is independent of N, we can see at  once from (20) 
tha t  + 

~ X v  ---- ~X:v 

and, in turn, from (21) 
+ + --  

R~ - exp (2ias)/~s, D~ = exp (2ie~)D~. 

The equality of intensities required in (26) results at  
once from these relations. Then Friedel's law remains 
valid in the present case, as was formerly proved by  
Ewald (1.925). 

(c) Example 3. The case where more than two strong 
rays exist without inter-relations 

According to the dynamical theory, the intensity of 
s-reflexion is determined not  only by v~ but  is in- 
fluenced by vs, and vs_¢, when another s'-reflexion 
occurs simultaneously, provided v,_,, does not vanish. 
The coefficient Vs_ ~, inter-relates the intensities of s- 
and s'-reflexions. If all the inter-relating coefficients 
v,_~, are zero, the reduced fundamental  equations 
become 

4- 4- :t: ± d:. :t: 4- 

@ -  ro%o + v _ l ~  +,_~u~ + . . .  + , _ o ~ ,  = o ,  
4 - 4 -  4- 

V 1 ~ o + @ - 7 ~ ) ~ + o +  . . . + o  = o ,  
± 4 -  4- 

v~uo+o+(~-~2)u~+O+. . .  +0 = O, 

* * * i o o o o . ° o o ° o . ° o o ° . . ° ° o . o ° ° ° o o o o o o ,  
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and we get 

Let  us put  

* __Vs 
~ * f  2 . N~--~ " (29) 

+ + 

~ ~s ¥ V s _--- = -- -= exp (2@~), 

U f  U s 

+ 

where e~ is the phase factor of %, and is independent 
of N, so tha t  by a similar consideration as in the fore- 
going example, we can readily conclude tha t  the law 
is valid also in this case. 

6. An e x a m p l e  in which  Friedel 's  l aw fails  

We mentioned in § 2(c) tha t  our observation in the 
case of zincblende violates Friedel's law. Although a 
theoretical interpretation of the observation according 
to the dynamical theory was given by Kohra, Uyeda 
& Miyake (1950), the essential points of the inter- 
pretat ion are given below from the present view- 
points. 

In  this case, Fourier coefficients v~ and v~ are 
complex conjugate to each other, and v~_~ is real 
and finite where n, m and n - m  stand respectively for 

(hhl), (hhD and (0, 0, 2l). The fundamental  equations 
then become 

+ 4- + + ± • 

( ~ - r ~ ) U o + V _ m U m + V _ ~ U .  = O,  
± + ± ± ± 

(fl~--7~)U,.+V,n_.U. = O,  V m ~ o  ..}_ 2 2 

± 4- 4- 4- ± 

( ~ n - - T n ) U n  = O . V nU 0 -~ V n _ m U  m-4- 2 2 

According to the experimental condition (see § 2(c)), 
the incident ray  is in the azimuth [110], so tha t  
fl~ = tim and 7~ = ~%. Let u s  put  

2 2 

Then, we obtain 
± ± 4- ± 4- ± 

~ .V 4- - -  VnT] N -'~ VrnVn--m ~ N  m = - -  VmT]N ~- V n ~ m - - n  (30) 
U n ~ 4- 4- ' ± ± 

2 
TIN - -  V m _ n V n _  m T]2V - -  V m _ n V n _  m 

and the number of wave points is six. 
Because Vn-m is real and v~ and Vm are complex 

conjugate to each other, we have from (30) and (3) 

+ + --  

u~ = Um,-'v u~ = u~ .  (31) 

By (20) and (31) we know 

+ 

~x_~v = ~X~v, (32) 

and from (21) and (32) we obtain the following result: 

- -  + - -  + - -  + - -  + 

R . = R ~ , R m = R . , D . = D m ,  D m = D . .  (33) 

If the a~nplitudes in (33) are squared, the relations 
(B) in § 2(c) are obtained. 

For t~e validity of Friedel's law, the relations (26) 
are reqmred, which, combined with (33), give 

+ + + + 

[Rn[ 9 =  ]Rm] 9, ]O,[ 2 =  [Om[L (34) 

The first of these relations is equivalent to the holding 
of (A) in § 2(c), which according to our observation 
fails. Our present problem is to make clear whether 
(34) holds or fails in the dynamical  theory. 

+ + 

According to (21), [R,I 2 and ]R~[ ~ are respectively 
given by 

+ + + 

]2F, R,] 9 = ~ c~uu~(~,~-/'~) exp (-2~i~,;~'H)I ~ , (35a) 
N 

+ + + 

[2FmRm]~. ,v ~" = .~' ~X~vUm(7'. --fin) exp (-2:rdT,~H)l 9 . (35b) 
~v 

These formulae are rewrit ten as 

+ + 

[2/"~R.,m] 2 = .~Y [O¢~vl2Iu~:~1217'~-/-'~] 2 
iV 

+ + + + 
+ ~ Z  . ~v ~,. iv x" , O~VO~v.U.,,nU., , . ( 7 .  -- F . )  (7'. -- P . )  

N4=~" 

× exp [ -2~i (7~-7~"*)H] ,  (36) 

where the suffix n, m means n or m. For  further dis- 
cussions, we s tudy separately the following eases" 

(a) 7NO are real for all N 
Under this condition .~lv are real for all N, and from 

(30) we have the relation 

+ + 

~v u~* for all N .  (37) U n 

Then the single summation in (36) is invariant  for the 
interchange of n and m. On the other hand, the double 
summation is not  invariant  for the interchange of n 
and m because 

+ + + + 

ux. ~". and - •" N'. n 'tVn "t~m "tem 

are ot equal to each otheP~ Thus Friedel 's law does 
not hold strictly in thiscase.  ~Since, however, the factor 

+ + 

C~lva*, exp [-2~i(7~'-~,~"*)H ] 

oscillates very rapidly with the change of T 0, it is 
quite probable tha t  the second term in (36) vanishes 
in the averaged intensity profile, which is calculated as 

1 r 
[Rs[ 2 = ~ lzr0 [Rs[2dF°' 

where A/~o means a small range of F o around a 
definite value. If such were the case, Friedel's law 
might hold loosely by interpreting intensities as aver- 
aged profiles of intensity. The vanishing of the second 

24* 
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term is very probable, but  we cannot prove it  rigorously 
because of the complicated nature of c%- as function 
of Fo. 

(b) A Tair of ~o is complex 
Since our experimental condition is the Bragg case, 

a pair of y0 ~ become conjugate complex to one 
another when the Bragg condition is well satisfied by 
the lattice planes m and n. If we assign to these roots 
the indices N = I and II,  we have 

vI0* = n II, v *  = vi . 

Assigning N = I I I ,  IV, V and VI to the other roots, 
which are assumed to be real, we obtain 

+ + 

u~-* = u~ for N = I I I ,  IV, V, V I ,  (38) 

but from (30) we have 

+ + + + 

[u~,] ~= [u~], [u~] ~= l u l l .  (39) 

These relations combined with (31) afford an example 
of (25)(iii) in § 4. 

One of the waves associated with the complex con- 
jugate roots ~,~ and y~i decreases and the other in- 
creases in penetrating deeper into the crystal. Ac- 
cording to the boundary condition, the damped wave, 
say N = I, predominates over all the other waves, 
provided the slab is sufficiently thick. Equations (35a) 
and (35b) then become respectively 

+ + + 

121PnRnt2= [(XIU~(~'In--./"n)I 2 , 
+ + + 

]2FmRm]2 I I ]~. = [o, , 

and by  (39) we have 
+ + 

IR.] ~ ~: IR~I 2. (40) 

Then, by (33), we have 
+ -- + - -  

[Rnl 9" =~= [Rn[ 9", [R,,,[ ~ + [R~l ~. (41) 
+ + 

The profiles corresponding to [R.I 2 and ]Rm] 2 have 
been numerically calculated in former papers 
(Kohra, Uyeda & Miyake, 1950; Kohra, 1954) and the 
difference between them is clearly shown. They show 
no rapid oscillation and there is no distinction be- 
tween detailed and averaged profiles. Thus Friedel's 
law fails in all respects in this case. 

Summarizing the results of this section, we can 
state: Friedel's law does not hold strictly in any case 

under the assumed conditions. Although the law is 
likely to hold loosely with relation to the averaged 
profile in ranges where all the y0 ~ are real, i t  fails in 
every respect when a pair of ~,~ is complex. 

7. C o n c l u s i o n  

I t  is shown by the examples in §§ 5 and 6 tha t  ac- 
cording to the dynamical theory of electron diffrac- 
tion Friedel's law holds in certain cases, but  fails in 
general, even when the effect of absorption is not taken 
into account in the theory. I t  must  be emphasized 
tha t  the cause of the failure is not the effect of absorp- 
tion. The cause of the failure is found in the dynamical 
inter-relation of reflexions which are taking place 
simultaneously. 

I t  is obvious tha t  the failure is also to be expected 
theoretically in the case of X-rays, even when no 
anomalous dispersion accompanied by  phase shift takes 
place. However, the experimental verification of the 
failure may  be very difficult with X-rays because the 
coefficients of inter-relation are very small in tha t  case. 
Similar remarks hold for neutron waves. 
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