W.R. BLACKMORE AND S.C. ABRAHAMS

versus (sin 0)/A and a smooth curve was drawn. This
is represented in Table 5.
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Friedel’s Law in the Dynamical Theory of Diffraction
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The significance and validity of Friedel’s law are critically discussed by means of the dynamical
theory of diffraction. It is proved that in some cases diffraction phenomena are not invariant
under the operation of inversion exerted on the crystal; this means that Friedel’s law fails. The
cause of the failure is not the effect of absorption, but is found in the dynamical relation of re-

flexions which are excited simultaneously.

1. Introduction

Friedel’s law (Friedel, 1913) was originally proposed
as an empirical rule for the diffraction phenomena of
X-rays by crystals. The law implies:

Intensities of reflexions of indices (hkl) and (hkl) are
equal to each other. (Form I)

This rule can be readily derived from the kinematical
theory of diffraction, because the structure amplitudes

F(hkl) and F(I_JJ) are generally complex conjugate to

each other and the integrated intensity of the diffrac-
tion spot given by this theory is proportional to |F|2.
The same law is expected to hold similarly for electron
and neutron waves when the diffraction takes place
in accordance with the kinematical theory.

Friedel's law is sometimes expressed in another
form (e.g. Zachariasen, 1944):

The diffraction phenomena of waves by a crystal
are invariant under an inversion of the crystal with
respect to the incident beam. (Form II)
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The relation between Form I and Form II is ecriti-
cally discussed in § 2. Form II implies that any in-
dication of the sense of polar axes in crystals never
appears in diffraction phenomena.*

The break-down of Friedel’'s law can only occur
when the scattering of waves by the atoms is ac-
companied by phase shifts. In the case of X-rays, this
effect was experimentally detected on zincblende, by
utilizing anomalous dispersion for zinc atoms, by
Nishikawa & Matsukawa (1928), Coster, Knol & Prins
(1930), and Geib & Lark-Horowitz (1932).

Now let us consider Friedel’s law in the dynamical
theory. In this theory, Friedel’s law expressed in
Form I has no definite meaning except when a certain
restriction is imposed, as explained in § 2. Therefore
we must refer to Form II. The proof of the validity
of Friedel’s law in the dynamical theory was given
by Ewald (1925) in the case of single reflexion, and by
Laue (1948a, b) for general cases in which simultaneous
reflexions take place.

On the other hand, the present authors (Miyake &
Uyeda, 1950) have found an effect by which the sense
of polar axes of zincblende can be determined solely
by an electron diffraction pattern from this crystal in
which two strong diffracted beams are present. Later,
Kohra and the present authors (Kohra, Uyeda &
Miyake, 1950; Kohra, 1954) showed that the principal
feature of the phenomenon is rendered by the dynam-
ical theory of diffraction without taking into account
the effect of absorption.

Our observation and theoretical explanation seem to
contradict Laue’s theory, and this contradiction cannot
be considered trivial. The purposes of the present
paper are to reinvestigate the meaning of Friedel’s
law and to find where it holds and where it fails. Our
theoretical interpretation in the case of zincblende is
discussed again and is confirmed ; thus it is proved that
Friedel’s law does not hold in some cases in the
dynamical theory, even when absorption is not taken
into account. Although our treatment applies equally
to the theories of X-ray, electron and neutron diffrac-
tion, the discussion is developed only for electron
diffraction.

* Friedel’s law has sometimes been interpreted as if it
implies that the presence or absence of the centre of symmetry
in crystals cannot be known from the diffraction phenomena
alone; but this interpretation is not correct. Friedel’s law
excludes knowledge about the sense of polar axes only; it

does not concern itself with the presence or absence of the
centre of symmetry. In some cases the presence or absence
of the centre of symmetry can be concluded from diffraction
patterns, although the sense of polar axes remains unknown. For
example: (i) In favourable cases the space group of crystals
can be uniquely determined from extinctions alone. (ii) Centro-
symmetrical and non-centrosymmetrical crystals present dif-
ferent features in the intensity statistics of reflexions (Wilson,
1949a, b). (iii) By applying the dynamical theory, Kambe &
Miyake (Kambe & Miyake, 1954; Miyake & Kambe, 1954)
discussed the effect of the relative phase angle of two structure
amplitudes on diffraction patterns, and they showed that a
method is available in principle to determine the existence or
absence of the centre of symmetry in crystals.

FRIEDEL’S LAW IN THE DYNAMICAL THEORY OF DIFFRACTION

2. The meaning of Friedel’s law in the
dynamical theory

(a) Plus and minus crystals

Let us first consider a plane parallel slab of a non-
centrosymmetrical crystal of infinite lateral extension
and thickness 2H. We will call it the plus crystal. The
electric potential therein may be written

V(r) = 3V, exp [2i (b)) 1)

+
m represents a set of three indices (m,mym,), V,, the
+

Fourier coefficient of V(r), and h,, the position vector
of a reciprocal-lattice point

h,, = m;b;+myby+msb,; (la)

here b;, b,, b; are the axes reciprocal to those of the
crystal lattice a,;, a,, a,.

Next, consider another crystal which is obtained
from the plus crystal by an operation of inversion
about the centre of the slab. The new crystal is called
the minus crystal and its potential is given by

V(r) = 2 Vpexp [2mi(Br)] @)

with the relation

+ —
VE=V,,. 3)
+ —_—
Since V(r) and V(r) are real, we have
+ + - -
V:l = V——m, V:: =V _n. 4

The wave function of an electron with the total
energy F in a stationary electric potential V(r) is
given by

¥ = exp [ 2miEt[R]u(r) , (5)

where u(r) obeys the Schrodinger equation for sta-
tionary states, namely .
V2u(r)+(8zm/[hE) [E+eV (r)]u(r) = 0. (6)
For the potential V(r), we put
V(r) = 0, 2 > H (upper free space),

+
V(r) = V(r), H > 2 > —H (inside the crystal),
V(r) =0, —H > z (lower free space),

where the 2 axis is taken to be normal to the surface
of the crystal slab.

On the boundary surfaces of the crystal, we have
the boundary conditions

u(r) and du(r)/oz are continuous at
z2=H and z=—-H. (7)

Ir each of the three spaces, u(r) is a superposition
of component plane waves. In the upper free space,
we assume present an incident wave of given amplitude
A and given wave vector K,, expressed by
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A exp [271(Kqr)] (8)
where
Kol = Ko = J{(@m1)E} .

Under the actual experimental condition, this wave
should be the only one in the free spaces which travels
towards the crystal; the other components in these
spaces must emerge outwards from the crystal. These
others correspond to diffracted waves (reflexions)
which may be observed in experiments.

(b) Formulation of Friedel’s law

In this subsection, the relation between Form I and
Form II is made clear. Form I is stated as an empirical
rule and it involves ambiguities because the meaning
of the word intensities can be interpreted in many
ways (see below). On the other hand, Form II involves
no ambiguity, but it is not suitable for comparison
with experiments. In the following, we start from Form
II and rewrite it in more convenient forms.

Form II can be rewritten as far as observable
quantities are concerned as follows: The directions and
the intensities of all corresponding reflexions (hkl) are
equal to each other for the plus and minus crystals,
provided the intensity and the direction of the incident
beam are kept unchanged (Form II'). In the dynamical
theory (sec § 4), as well as in the kinematical theory,
the directions of all corresponding reflexions are equal
to each other for the plus and the minus crystals.
Therefore, Friedel’s law in Form II’ holds if the
intensities of the corresponding reflexions are equal
to each other. The word infensities should be inter-
preted to include profiles of intensity curves, because
according to the dynamical theory reflexions take
place within certain angular ranges even when the
crystals are thick.

Let us assume that Form II' holds and let us exert
an operation of inversion on one of the crystals, say
the minus crystal, and exert simultaneously the same
operation on the incident beam which falls upon it.
(The inversion does not apply to the axial system of
reference.) Then we obtain the plus crystal and an
incident beam in the direction opposite to that
originally assumed. Since the indices (kkl) for the

minus crystal are transformed into the indices (hkl)
for the new plus crystal, we can rewrite Form IT’ as
far as intensities are concerned as follows: The in-
tensities of (hkl) and (kkl) for a fized crystal are equal
to each other provided the directions of the incident beams
which excite these reflexions are opposite to each other
(Form I').

Form I’ goes over into Form I if the restriction
imposed on the directions of the incident beams is
omitted. Such a restriction can be omitted when the
kinematical theory is applicable and the crystal is
sufficiently thick; in such cases Bragg reflexions
appear under sharp angular conditions and only in-
tegrated intensities, which are independent of the
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directions of the incident beam, can be observed.
However, when reflexions possess profiles of finite
widths, the restriction is important. In the dynamical
theory, profiles are generally finite and, furthermore,
intensities vary with azimuthal settings of incident
beams, especially when more than two reflexions are
excited simultaneously. Therefore, the restriction is
inevitable and cannot be omitted in Form I'. In the
following sections discrimination between the holding
and the failure of Friedel’s law in the dynamical theory
must be made by applying Form II, II' or I'.

If Form IT, IT’ and I’ hold by interpreting the word
tntensities as detailed profiles, we say that Friedel’s
law holds strictly. When, however, profiles of inten-
sities oscillate rapidly with changes of the direction
of incident beam so that only averaged profiles are
observable, intensities may be interpreted as averaged
profiles from an experimental point of view. When
reflexions are so sharp that only integrated intensities
are observable, intensities may be interpreted as inte-
grated intensities. In some cases Form IT, IT' and T,
may hold by interpreting intensities as the averaged
profiles or the integrated intensities. In such cases we
say that Friedel’s law holds loosely. When the law
holds strictly it holds also loosely; but not vice versa.

It can be proved that when the diffraction process
is in accordance with the kinematical theory, Friedel’s
law holds strictly, even when the crystal is so thin that
the widths of profiles are finite.

(¢) The case of zincblende

In this subsection, we show that our observation
in the case of zincblende (Miyake & Uyeda, 1950)
violates Form II'. Qur observation is as follows: The
incident beam falls upon the cleavage surface (110)
of the crystal in the [110] or [110] azimuth, and re-
flexions (kA1) and (hhl) are excited simultaneously. We
observed that the intensities of these reflexions are
not equal to each other, namely the relation

I (rh) = I(hhf) (4)
fails. _

Let us consider the reflexions (kkl) and (hAl) from
the plus and the minus crystals. Since zincblende has
a mirror plane parallel to (110), the minus crystal can
be derived from the plus crystal not only by an
inversion, but also by a rotation of 180° around the
axis normal to (110). Then we have

+ - + -
I(hhl) = I(hhi)a I(hhi) = I(hhl) . (B)

When we assume the equality (4), then, combining
(A) with (B), we get

+ - + —

Ty = Loway Loy = Tipniy - (©)

Since, however, (4) fails in the present case, (C) must
also fail. Thus our observation violates Form II'.
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(d) Meaning of complex conjugate wave functions in
diffraction problems

When a wave function «(r) satisfies the Schrodinger
equation for the plus crystal, then its complex con-
jugate function %(r)* satisfies the same equation. It is
sometimes thought that the general validity of Frie-
del’s law in the dynamical theory is based upon this
relation (Laue, 1948a, b). Actually, however, this
relation indicates nothing on the validity of the law,
as is clear from the following consideration.

We assume that w«(r) for the plus crystal is com-
posed of component waves such as are schematically
represented in Fig. 1(a). The complex conjugate solu-

St
(@) +\;/,
7

© =/

/D

Fig. 1. Schematic illustration of (a) u(r), (b) u(r)*,
and (c) the inversion of ().

tion «(r)* is composed of component waves which
travel in opposite directions, shown in Fig. 1(b). Now
we apply simultaneously an operation of inversion
upon the crystal and the wave field of Fig. 1(b).
Then, since the crystal is transformed into the minus
crystal, we have a possible solution for the minus
crystal as is shown in Fig. 1(c). The scheme of Fig. 1(c),
however, contains more than one entrant wave towards
the crystal, contradicting the condition of diffraction
experiments. It is obvious that such a solution has no
relation to the present problem.}

3. General procedure of solution of the
diffraction problem

Although the dynamical theory of electron diffraction
is widely known (e.g. Bethe, 1928; Thomson &
Cochrane, 1939; Lamla, 1938a, b; Laue, 1948b), the
following survey of the theory will be helpful.

t Laue seemed to consider that the wave function including
time for the minus crystal has the form exp (2niEt/h)u(r)*
(Laue, 1948b). But this is only another way of representing
the state exp (—2niEt/h)u(r) for the plus crystal (see (5)).

FRIEDEL’S LAW IN THE DYNAMICAL THEORY OF DIFFRACTION

A solution of the Schrodinger equation (6) for an
electron in a crystal is given by a Bloch function

p(ko) = exp [27i (kor)] 2w,y exp [27i(h,r)], (9)

where k; represents the wave-number vector of the
primary wave within the crystal. We can regard y(k,)
as a superposition of plane waves with amplitudes
u,, and wave-number vectors

K, = ky+h, . (9a)
By substituting (9) in the Schrédinger equation (6),
we obtain the fundamental equations of diffraction

(”g_kgn)um'*‘ 2' Vpllp—n = 0 ) (10)
where »

w = (@m{h?)(E+eVy), v, = 2me[)V,,, (1)

and 2’ means the sum without the term n = (000).
n

The vector k, must satisfy the compatibility rela-
tion

......................................

Y_2n

Vn ("(2] - kﬁ) V_pn V_m
Un ("(21 - k12l.) Vp—m
U Vo (E—KkZ)...

Ul=0. (12)

......................................

This defines the dispersion surface in reciprocal space;
the wave points for k, must lie on this surface.

Let us assume the incident wave in the upper space
is given by (8). We decompose K, and k,, (including
m = 0) into tangential and normal components

K, = T,—I,z, (13)
K = ty—ynZ, (14)

where z is the unit vector along the positive direction
of z. Then the tangential continuity for the incident
wave vector required by the boundary condition is
rewritten as

Ty =t,. (15)

Let us define, for convenience, the ¥-normal as follows:
The straight line normal to the entrant surface which
passes through the end point of the vector —T,
drawn from the origin of the reciprocal lattice.
The wave points for k, are determined by the inter-
section of the »-normal and the dispersion surface.
The factor x—4Z in (10) and (12) can be rewritten as

xy—ky = Br—va, (16a)

ﬁizn = ”g_t?m ¥Ym = yo-hmz 3

where
(16b)

and A, is the z-component of h,. Since §, is a
known quantity, provided the incident wave vector
is given, and h,, is also known, the determinant (12)
is a function of the unknown quantity y,.
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We denote the possible roots of y, by p&(N =
0,1, 1L, ...). Corresponding to each y¢, we are given
a Bloch function yp(k{) with coefficients %5, whose
ratios are determined by the equation (10) and which
can be normalized properly, say u{ = 1.

The wave function of an electron within the crystal,
u,, is given as a superposition of many Bloch functions

u, = X oyp(ky) = 2 oy Zup exp [27i(kyr)], (17)
Iy N om
where the sum X is over all possible wave points.
N
The coefficients are determined by the boundary con-
ditions (7).

We can write the waves in the upper and lower free
spaces respectively as

uy = A exp [2ni(K,r)]+ X R, exp [27i(K,1)], (18a)

uy, = 3 D, exp [2mi(K,r)], (18b)

where the index s is used to represent the indices
(m,, m,) corresponding to a row of reciprocal-lattice
points normal to the surface of the crystal; specifically,
8 =0 means m; =0, m, = 0. Sometimes hereafter
m(m,mym,) is written as (s, my). The coefficients E;
and D, are amplitudes of diffracted component waves
and K and K, are their wave vectors. It is obvious that

1Kl = K| = K,
and, by the requirement of the tangential continuity,
K, =t+Iz, (19a)
K,=t—Iz, (195)
where t, means tangential component vector of K, ..
(my is arbitrary), and I is given by I'; = /{Kg—13}.
The conditions (7) at the upper and the lower sur-
faces, after eliminating R; and D,, give:
2 3 oyl + L m, eXp (—270iy5 o H) I
I
" = 2Ty 4 exp (—2ailoH) .80, | (20)
DD IPI (VAN ANTVANS'S o (miyy , H) =0, I
N my

where J,, = 0 for s 0, and =1 for s = 0. These
relations hold for all s.

If x are known from (20), the amplitudes of dif-
fracted waves, R, and D, for all s, are calculated from
the following equations:

32 3 oyl m—T)ul n exp (—2miyd o H)
o — —2I'R,exp (i H),
3 3 oyl m AU, €XP (2miyl , H)
¥ — oD, exp (2nilH) .

(21)

|R,|? and |D,|? give detailed intensity profiles as func-
tions of I'y, which decides the direction of the incident

beam.

ACS8
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In the above equations the total number s is ex-
tended to infinity, and consequently the total number
of N is also infinity; but from now on, for the sake of
simplicity, we confine these numbers, assuming them
to be respectively o+1 and Z+1. Since the number
Z+1 is always twice the number ¢+1, as proved by
Lamla (1938a, b), the relations (20) are just sufficient to
determine all oy uniquely, and the relations (21) are
sufficient to determine B, and D,. We call the funda-
mental equations, after they are reduced to a finite
number, the reduced fundamental equations.

4. Properties of wave function for plus and minus
crystals

We will now briefly depict some simple but important
mathematical properties of the Bloch functions for the
plus and the minus crystals:

(a) A root y, of the compatibility equation (12) is
in general either real or complex. In the latter case its
complex conjugate should also be a root, because,
through the relation »,, = v*, according to (4), the
complex conjugate to the determinant (12) can be
obtained by exchanging rows and columns and by
replacing y, by »& in the determinant. We use new
indices M and L or L’ to indicate respectively a real
and a pair of conjugate roots; for example, the real
and the complex roots of y, are written respectively as
yof and p§ or p¢’. The letter N is also used as before
for the general index of M and L or L'.

(b) The dispersion surfaces are the same for the plus
and the minus crystals, because the determinant (12)
for both crystals is the same, as is known by paying
due regard to the relations (3) and (4). This amounts
to having the same roots of y, for the two crystals.
Therefore the marks + and —, which are used to
discriminate between the quantities relevant to the
plus and the minus crystals, can be omitted from y,.

(¢) By substituting (16), the fundamental equations
(10) and their conjugate complexes are rewritten as

{ﬁfn_'('y(j)\’_kmz)z}ug‘*' 2’ ”nurlr\;—n =0 )
{ﬂrzn_ ()’(I)V*—hmz)z}uﬁ*_‘_ 2, ’v:‘urlr\;fn = 0 .
n

By comparing these equations, we get the following
relations: When the crystal is centrosymmetrical
(where v, are all real)

u2! are real, (22) (i)
uk = ul*, (22) (ii)

Whyn the erystal is non-centrosymmetrical

uY are complex in general for real and

complex y¥ , (23)()

uk = uZ* does not hold in general.t (23) (ii)

+ This means that the equality can hold in some special
cases, but fails in others.

24
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Examples of the failing of the equality in (23)(ii)
are available from (28), (29) and (30) in §§ 5 and 6.

(d) The fundamental equations (10) for the plus and
minus crystals are

+N l + +N
{2~ (Y —hma)?}um + 2 vl . =0,
(B~ (7 R ud + Z’v =0,

By comparing these equations and by referring to (3),
we get the following relations:

ul = u;‘,f * (24) (1)
- + + .
ul = uk* or ul =ul*. (24) (i)

For non-centrosymmetrical crystals, we get from
(23)(i) and (24)(i)

u,{{ = u;}f does not hold in general,t (25) (i)
and from (23)(ii) and (24)(ii)

- +

uEL = u% does not hold in general.} (25) (ii)

Even for the absolute values of both sides of the above
equations,

- +
|uk| = |u%] does not hold in general.t (25) (iii)

An example of the failure of the equality in (25)(iii)
is provided by (30) in § 6.

From (24) and (25) we see that the relation between
the Bloch functions for the plus and the minus erystals
is not so simple for complex y, as for real y,.

5. Examples in which Friedel’s law holds

According to § 2(b) and § 3, Friedel’s law in the
dynamical theory is given by the relations

IR = IR, IDsI2

Since |R,|2 and |D,[2 give detailed profiles of intensities,
the law holds strictly when (26) is satisfied for all s.

In this and the following sections some practical
examples are given where the law holds and where
it fails. Although it is desirable to find general con-
ditions under which the law holds or fails, we could

not find them because no simple relations between

D (26)

+
) and uY are available for non-centrosymmetrical
crystals, as mentioned in § 4(d).

(a) Example 1. The case where the Fourier coefficients
(contained in the reduced fundamental equations) are all
real

Since this case is essentially equivalent to that of
centrosymmetrical crystals, it is obvious that the law
holds.

FRIEDEL’S LAW IN THE DYNAMICAL THEORY OF DIFFRACTION

(b) Example 2. The case where only a single reflexion
s excited

This case can be reduced to the foregoing case,
because the only Fourier coefficient, appearing in the
reduced fundamental equation, can be reduced to be
real by a suitable transformation of the coordinate
origin, provided that the lattice plane concerned is not
parallel to the surface of the crystal slab. The above-
mentioned restriction arises from our premise in
choosing the origin at the mid-depth of the slab.
A more general treatment can be given as follows:

When we assign the index s to the reflexion con-
cerned, then the reduced fundamental equations are

2 aEy T *y
.80—)’0)“5 t+o_su; =0,

(27)
”uO + ﬂ2 ;V =0 3
where uj are normalized to unity. Solving (27), we
have .
+ — 2__ ,,N®
o i 28)
V_s
where N =1, 2, 3 and 4. Let us put
- +
’"'_s=3_::¢=__exp (21’8.9)

w¥ v, v,

then &, corresponds to the phase factor of v,. Since
&; is independent of N, we can see at once from (20)

that + _

Xy = Xy

and, in turn, from (21)

+ -+ -
R, = exp (2i¢,)R,, D, = exp (2ig,) D,

The equality of intensities required in (26) results at
once from these relations. Then Friedel’s law remains
valid in the present case, as was formerly proved by
Ewald (1925).

(¢) Example 3. The case where more than two strong
rays exist without inter-relations

According to the dynamical theory, the intensity of
s-reflexion is determined not only by v, but is in-
fluenced by vy and v,_,, when another s'-reflexion
occurs simultaneously, provided », , does not vanish.
The coefficient »,_, inter-relates the intensities of s-
and s'-reflexions. If all the inter-relating coefficients
v,y are zero, the reduced fundamental equations

become )
+ + +

+ + + +
(ﬂg"yg)uo FV_ Uy FV_gUst . FV_u, =0,
+ + ES
o+ (B9, +0+ ... +0=0,
+ £ +
Vol +0+ (B3 —Yius+0+...40 = 0,
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and we get +
* /Us
ul = T (29)
Let us put
oot
2= 2= exp (2ie,),
u v

+
where ¢, is the phase factor of v, and is independent
of N, so that by a similar consideration as in the fore-
going example, we can readily conclude that the law
is valid also in this case.

6. An example in which Friedel’s law fails

‘We mentioned in § 2(c) that our observation in the
case of zincblende violates Friedel’s law. Although a
theoretical interpretation of the observation according
to the dynamical theory was given by Kohra, Uyeda
& Miyake (1950), the essential points of the inter-
pretation are given below from the present view-
points.

In this case, Fourier coefficients v, and v, are
complex conjugate to each other, and v,_, is real
and finite where n, m and n—m stand respectively for
(hhl), (RRI) and (0, 0, 21). The fundamental equations
then become

ES ES ES E
(ﬂg—y%)uo FV_ U+ V_pp = 0,
* * + B +
vmuo'i'(ﬂfn—yyzn)um'*'vm—nun =0,
+ %

& s ot
vnuo+vn—mum+(ﬂn_7n)un =0.

According to the experimental condition (see § 2(c)),
the incident ray is in the azimuth [110], so that
B = Bm and y, = y,. Let us put

n=pa—vs=Bn—¥m-
Then, we obtain

+ + % E +

’ ;;‘V - wﬂﬂ’n_—m 4[6 —Uml]N + UnPm—n (30)
n £ % m = , % ’
7]1\’ —VUm—n¥n—m 7]?\7 ~—Vp—nVn—m

and the number of wave points is six.
Because v, ., is real and v, and v, are complex
conjugate to each other, we have from (30) and (3)

+ +
N y¥ N

W = ud ul =l 31)
By (20) and (31) we know
+ -_—
Xy = &y, (32)

and from (21) and (32) we obtain the following result:

— + —_

+ - + - +
Rn=Rm, Rm=Rm Dn=Dm: Dm:Dn (33)

If the amplitudes in (33) are squared, the relations
(B) in § P(c) are obtained.
For thl’e validity of Friedel’s law, the relations (26)
are required, which, combined with (33), give
+ + + +
B, = |Bnl?, |Dyl? = Dyl (34)
The first of these relations is equivalent to the holding
of (4) in § 2(c), which according to our observation
fails. Our present problem is to make clear whether
(34) holds or fails in the dynamlcal theory.

According to (21), [Rnl2 and |R,,,|2 are respectively
given by

|2TR 2= [sz,vuv(yn I',) exp (—2niy, H)?, (35a)

I,‘Z]",,,R,,,I2 = ]ZocNuﬁ('y —TI,) exp (—2miy; H)2. (35b)
~

These formulae are rewritten as
21, Rn ml? = 2 I“lelun ml2lyn —y/?

+33 oczvoc}'é'un”, mui'i(%’f =I%) (ya = T)*

NN
x exp [—2mi(y) —yn *)H], (36)

where the suffix %, m means n or m. For further dis-
cussions, we study separately the following cases:

(@) y3 are real for all N

Under this condition 7, are real for all N, and from
(30) we have the relation

+ +

ud =ul* for all N, (87)
Then the single summation in (36) is invariant for the
interchange of n and m. On the other hand, the double
summation is not invariant for the interchange of »
and m because

ot + o+
wupul* and wlul'*

are n\ot equal to each othel’\t Thus Friedel’s law does
not hold strictly in this case. [Since, however, the factor

+ o+

xyoak exp [—2mi(yy—yi *)H]

oscillates very rapidly with the change of I, it is

quite probable that the second term in (36) vanishes

in the averaged intensity profile, which is calculated as
1 i

= 2
IBP =47 ), BT,

where AI'y means a small range of I, around a
definite value. If such were the case, Friedel’s law
might hold loosely by interpreting intensities as aver-
aged profiles of intensity. The vanishing of the second

24%
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term is very probable, but we cannot prove it rigorously
because of the complicated nature of x, as function
of I,.

(b) A pair of ¥ is complex

Since our experimental condition is the Bragg case,
a pair of p{ become conjugate complex to one
another when the Bragg condition is well satisfied by
the lattice planes m and n. If we assign to these roots
the indices N = I and II, we have

Yor = Yo Nf = N -

Assigning N = III, IV, V and VI to the other roots,
which are assumed to be real, we obtain

+ +
wi* =ul for N =1IILIV,V,VI,
but from (30) we have

(38)

+ + + +
lunl # unls [udl] = |uz] . (39)
These relations combined with (31) afford an example
of (25)(iii) in § 4.

One of the waves associated with the complex con-
jugate roots p; and p' decreases and the other in-
creases in penetrating deeper into the crystal. Ac-
cording to the boundary condition, the damped wave,
say N = I, predominates over all the other waves,
provided the slab is sufficiently thick. Equations (35a)
and (35b) then become respectively

+ + +
I2Fan[2 = [“1“%()’%_11")12 s

+ + +
12FmRmI2 = I“Iugz(yfz_rn)lz ’
and by (39) we have

+ +
|B,[? = | Bl (40)
Then, by (33), we have
+ - + -
[Bal® = |B,[% |Bnf® + B2 (41)

+ +
The profiles corresponding to |R,|? and |R,|? have
been numerically calculated in former papers
(Kohra, Uyeda & Miyake, 1950; Kohra, 1954) and the
difference between them is clearly shown. They show
no rapid oscillation and there is no distinction be-
tween detailed and averaged profiles. Thus Friedel’s
law fails in all respects in this case.

Summarizing the results of this section, we can
state: Friedel’s law does not hold strictly in any case

FRIEDEL’S LAW IN THE DYNAMICAL THEORY OF DIFFRACTION

under the assumed conditions. Although the law is
likely to hold loosely with relation to the averaged
profile in ranges where all the p{ are real, it fails in
every respect when a pair of y{ is complex.

7. Conclusion

It is shown by the examples in §§ 5 and 6 that ac-
cording to the dynamical theory of electron diffrac-
tion Friedel’s law holds in certain cases, but fails in
general, even when the effect of absorption is not taken
into account in the theory. It must be emphasized
that the cause of the failure is not the effect of absorp-
tion. The cause of the failure is found in the dynamical
inter-relation of reflexions which are taking place
simultaneously.

It is obvious that the failure is also to be expected
theoretically in the case of X.rays, even when no
anomalous dispersion accompanied by phase shift takes
place. However, the experimental verification of the
failure may be very difficult with X-rays because the
coefficients of inter-relation are very small in that case.
Similar remarks hold for neutron waves.
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